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Phase dynamics and Bose-broken symmetry in
atomic Bose–Einstein condensates
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1Department of Physics, University of Auckland, Private Bag 92019,
Auckland, New Zealand

2Optical Sciences Center, University of Arizona,
Tucson, AZ 85721, USA

Collisions lead to the collapse and revival of the interference fringes between two
atomic Bose–Einstein condensates. We study the collapses and revivals of the relative
phase between the condensates for two different initial states. One state invokes Bose-
broken symmetry allowing us to write the wavefunction as a superposition of total
number (of both condensates) states whereas the other does not.

The recent experimental realization of a weakly interacting Bose–Einstein condensate
in an alkalic gas (Anderson et al. 1995; Bradley et al. 1995; Davis et al. 1995) has
stimulated considerable theoretical work on the properties of these condensates. One
question which has received much attention concerns the phase of the condensate
and how it is established (Javanainen & Yoo 1996; Naraschewski et al. 1996; Castin
& Dalibard 1997; Cirac et al. 1996; Wong et al. 1996; Barnett et al. 1996; Mølmer
1997). A conventional approach is to invoke Bose-broken symmetry arguments (for a
comprehensive discussion of Bose-broken symmetry see, for example, Griffin (1993))
and select an arbitrary phase from an initial state which has a random phase. (It is
not possible to measure the absolute phase of a condensate so that the phases we
talk about are the relative phases between two condensates.) A condensate formed
in the ground state of a trap will be in a number state, though we may not have
knowledge of what this number is. A number state may be considered as a continuous
superposition of coherent states all with different phases; spontaneous symmetry
breaking then selects just one (arbitrary) phase. Recently it has been shown that
a relative phase may be established between two condensates initially in number
states by measurements (Javanainen & Yoo 1996; Naraschewski et al. 1996; Castin
& Dalibard 1997; Cirac et al. 1996; Wong et al. 1996). This leads to the conclusion
that the condensate can equally well be in either a coherent state or a number state.
Note that whereas total atom number (of the two condensates) is specified in the
number state case, an initial coherent state is a Poissonian superposition of total
number states.

In this paper we consider the evolution of the visibility in the interference between
two Bose–Einstein condensates in the presence of collisions. Collisions give rise to
the collapse and revival of the macroscopic wavefunction of small atomic condensates
composed of 103–106 atoms (Wright et al. 1996), which results in collapse and revival
of the visibility when two condensates are interfered. The central result of this paper
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is that the revival time is strongly dependent on the initial state chosen for the
condensate. We shall illustrate our results for two different initial states of the two
condensates. In the first example, we invoke Bose-broken symmetry and consider the
product of two coherent states so that superpositions of total number states are used.
In the other example, we consider an entangled state of the two condensates with
fixed total number N so that no assumption of Bose-broken symmetry is invoked.
The evolution of the condensates under the influence of collisions is studied for each
of the above initial conditions and the collapse and revival times are compared.

Our model comprises two Bose–Einstein condensates which both occupy the
ground-state of their respective traps and are described by the atom annihilation (cre-
ation) operators â (â†) and b̂ (b̂†). Atoms are released from each trap with momenta
k1 and k2, respectively, producing an interference pattern which enables a relative
phase to be measured.

The intensity of the atomic field is given by

I(x, t) = I0〈[â†(t)eik1·x + b̂†(t)eik2·x][â(t)e−ik1·x + b̂(t)e−ik2·x]〉, (1.1)

where I0 is the single atom intensity. Atoms within each condensate collide and this
may be described by the Hamiltonian

H = 1
2~χ[(â†â)2 + (b̂†b̂)2], (1.2)

where χ is the collision rate between the atoms within each condensate. Cross-
collisions between the two condensates, described by the term â†âb̂†b̂, are not included
since they are dependent on the actual geometry of the physical situation. The coef-
ficient of this term could be anywhere between zero and ~χ depending on the overlap
between the two condensates. We consider the case where this overlap is small.

Including the time dependence of â and b̂ due to the collisions described by equa-
tion (1.2), we get for the intensity,

I(x, t) = I0{〈â†â〉+ 〈b̂†b̂〉+ 〈â† exp[i(â†â− b̂†b̂)χt]b̂〉e−iφ(x) + h.c.}, (1.3)

where φ(x) = (k2 − k1) · x. The third term in the expression for I(x, t) gives rise to
interference fringes. However, the interference pattern will be modified in time due
to the decohering effects of the collisions.

We shall now proceed to demonstrate how the interference pattern evolves for dif-
ferent initial states of the condensates. We will consider two classes of initial states,
one which uses Bose-broken symmetry arguments and the other which does not.
Invoking Bose-broken symmetry allows us to write the wavefunction as a superposi-
tion of number states. Bose symmetry is deemed to be broken in the formation of the
condensate. The uncertainty in the number leads to the wavefunction possessing a
definite phase via the number-phase uncertainty relation ∆n∆φ ∼ 1. Following this
line of argument, one can imagine an initial fixed number of atoms before the conden-
sate is formed. This has indeterminate phase since it can be expressed as a continuous
superposition of coherent states each possessing a particular phase. When the con-
densate is formed, the symmetry is broken with one of the coherent state selected, its
phase becomes the phase of the condensate. In the spirit of Bose-broken symmetry
we then take each condensate to be initially in a coherent state

|ϕB〉 = |α〉|β〉. (1.4)

This yields for the intensity in equation (1.3)

I(x, t) = I0|α|2{1 + exp[2|α|2(cosχt− 1)] cos[φ(x)− φ]}, (1.5)
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Figure 1. The visibility as a function of time for (a) two independent coherent states which
invokes Bose-broken symmetry and (b) entangled coherent states which does not. We have used
a total atom number of N = 100 corresponding to a square amplitude |α|2 = 50 for the two
independent coherent states.

where we have set the amplitude of the two condensates to be equal to maximize the
visibility of the interference pattern. The relative phase between the two condensates
is defined to be φ, so that the relationship between the complex amplitudes is β =
αe−iφ. The exponential term describes the time dependence of the visibility of the
interference pattern. Inside this exponential, we have a periodic function of period
2π/χ, corresponding to revival times where the visibility is 1. This visibility suffers
a minimum half-way between these revivals with a value of exp(−4|α|2); it varies
smoothly in time from these minima to their local maxima.

In our second class of initial states, we will not use Bose-broken symmetry, so we
have an initial fixed total atom number N for the two condensates. As an example,
we consider the product of two coherent states |α〉 ⊗ |β〉 projected onto a number
state basis (Mølmer 1997). This basis is truncated to size N with equal amplitudes
|α| = |β| =

√
( 1

2N). We can define a relative phase between the condensates by
superposing number difference states. This entangled state is

|ϕN 〉 = 2−N/2eiNφ
√
N !

N∑
k=0

e−ikφ√
k! (N − k)!

|k〉 ⊗ |N − k〉, (1.6)

where φ is the relative phase between the condensates. Note how each entangled
number state has fixed total atom number N and number difference 2k. Entangled
states of similar form can be produced by interfering two condensates initially in
number states. The intensity for this initial state is

I(x, t) = I0
1
2N{1 + cosN−1 χt cos[φ(x)− φ]}. (1.7)

The visibility of the interference pattern is | cosN−1 χt|. The parity of the total atom
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number N , whether it is odd or even, plays a role in the revivals. When N is odd,
the cosine term is raised to an even power giving a revival period of π/χ since it
is never negative. When N is even, the cosine term is raised to a odd power, also
giving a revival period of π/χ, but with each alternate revival occurring with the
phase shifted by π radians. In both cases, the revival period is one half of the period
predicted in the previous case where we used Bose-broken symmetry whatever the
parity of N is.

The significant difference between the two cases is that the total number N is not
fixed for the case of Bose-broken symmetry, whereas it is for the other case. The factor
of two difference in the period can be explained by looking at the exponential term in
equation (1.3). Inside this exponential we have the atom number difference operator
â†â− b̂†b̂, which is quantized in units of 2 when the total number is fixed and units of
1 when it isn’t fixed. Thus we have either an exp(i2nχt) term or an exp(inχt) term,
where n is an integer. This gives rise to the factor of two difference in the period.
The visibilities of the interference patterns when Bose-broken symmetry is invoked,
equation (1.5) and when it is not, equation (1.7) are shown in figures 1a and 1b.

Observations of collapses and revivals are also possible via indirect measurements
schemes using light scattering as suggested by Imamoḡlu & Kennedy (1997) and
Javanainen (1996), where independent condensates are coupled to a common excited
state. The recent production of two overlapping condensates of 87Rb in different spin
states has increased the experimental feasibility of observing collapses and revivals
between two atomic condensates.
This research was supported by the University of Auckland Research Committee, the New
Zealand Lottery Grants Board and the Marsden Fund of the Royal Society of New Zealand.
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Ketterle, W. 1995 Phys. Rev. Lett. 75, 3969.
Griffin, A. 1993 Excitations in a bose-condensed liquid, chapter 3. Cambridge University Press.
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